HEAT EXCHANGER CALCULATIONS EXAMPLE

The main condenser of a steam plant is at a pressure of 5 psia. Steam exits the turbine with a steam quality of 90%. The steam mass flow rate is 12,000 lb_m/hr. It exits the condenser as a saturated liquid. The condenser is cooled by seawater. The seawater injection temperature is 60°F. The seawater mass flow rate is 800 gpm.

The overall heat transfer coefficient for this heat exchanger is 125 $\frac{Btu}{hr \cdot ft^2 \cdot {}^oF}$.

FIND: Required heat exchanger area [ft²].

- RECUPERATIVE (INDIRECT CONTACT) a) Is this a recuperative or mixed flow HX?
- b) What type of flow pattern is there in this HX? CROSS FLOW (PHASE CHANGE)
- c) What is the saturation temperature [°F] of the steam in the condenser? (You may round to the nearest whole integer - easier for enthalpy look up later in steam table 1.) TSAT @ 5 PSIA = 162.24° F ≈ 162° F
- d) Calculate the heat transfer rate [Btu/hr] of the hot fluid (steam):

$$\dot{Q}_{H} = \dot{m}_{H}(c_{p}\Delta T)_{H} = \dot{m}_{H}(\Delta h)_{H}$$

$$NOT USEFUL$$

$$\dot{Q}_{H} = \dot{m}_{STM} \left(h_{STM \, IN} - h_{STM \, OUT} \right)$$

$$= 12,000 \frac{v_{Bm}}{Hr} \left(1031.0 - 130.2 \right) \frac{Btu}{v_{Bm}}$$

$$\dot{Q}_{H} = 10.8096 \times 10^{6} \frac{Btu}{Hr}$$

$$h_4 = h_{f} + \chi_4(h_{fg}) T$$

$$= 130.2 + (.9)\chi_{1000.9}$$

$$h_4 = 1031.0 \frac{8tu}{USm}$$

$$h_1 = h_f = 130.2 \frac{8tu}{USm}$$

$$\Delta h = h_4 - h_1$$

$$1000 = 1000 = 1000$$

$$\Delta h = h_4 - h_1$$

e) Calculate the exit temperature [°F] of the cold fluid (seawater):

f) Calculate the Log Mean Temperature Difference [°F]:

$$\Theta_{m} = \frac{\Theta_{1} - \Theta_{2}}{\ln\left(\frac{\Theta_{2}}{\Theta_{2}}\right)}$$

$$= \frac{(102 - 74)^{\circ} F}{\ln\left(\frac{102}{74}\right)}$$

$$\Theta_{m} = 87.25^{\circ} F$$

g) Calculate the required HX area [ft²]:

$$\dot{Q}_{H} = \dot{Q}_{C} = \dot{Q}_{HX}$$
 $\dot{Q}_{HX} = 0$
 \dot{Q}_{HX}